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Abstract
Identifying and quantifying the importance of environmental variables in structuring 
population genetic variation can help inform management decisions for conservation, 
restoration, or reforestation purposes, in both current and future environmental con-
ditions. Landscape genomics offers a powerful approach for understanding the envi-
ronmental factors that currently associate with genetic variation, and given those 
associations, where populations may be most vulnerable under future environmental 
change. Here, we applied genotyping by sequencing to generate over 11,000 single 
nucleotide polymorphisms from 311 trees and then used nonlinear, multivariate envi-
ronmental association methods to examine spatial genetic structure and its associa-
tion with environmental variation in an ecologically and economically important tree 
species endemic to Hawaii, Acacia koa. Admixture and principal components analyses 
showed that trees from different islands are genetically distinct in general, with the 
exception of some genotypes that match other islands, likely as the result of recent 
translocations. Gradient forest and generalized dissimilarity models both revealed a 
strong association between genetic structure and mean annual rainfall. Utilizing a 
model for projected future climate on the island of Hawaii, we show that predicted 
changes in rainfall patterns may result in genetic offset, such that trees no longer may 
be genetically matched to their environment. These findings indicate that knowledge 
of current and future rainfall gradients can provide valuable information for the con-
servation of existing populations and also help refine seed transfer guidelines for re-
forestation or replanting of koa throughout the state.
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1  | INTRODUCTION

Identifying and quantifying the importance of environmental variables 
in structuring population genetic variation can inform management 

decisions for conservation, restoration, or reforestation purposes, in 
both current and future environmental conditions. For example, knowl-
edge about the association between genotype and environment is im-
portant for selecting proper seeds for planting when tree populations 
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are locally adapted (Aitken & Whitlock, 2013; Sork et al., 2013), as 
is generally the case (Rehfeldt, Ying, Spittlehouse, & Hamilton, 1999; 
Savolainen, Pyhajarvi, & Knurr, 2007). As the environment changes, 
nonlocal seed sources may be increasingly considered based on their 
match to the novel environment. Therefore, seed transfer guidelines 
can benefit from knowledge of the factors structuring genetic varia-
tion on the landscape and how they may change in the future.

Spatial genetic structure can arise due to restricted dispersal and 
geographic barriers to gene flow (Avise, 2000), as well as environmen-
tal factors that shape genetic variation on the landscape by influencing 
demographic processes (e.g., via phenology) or imposing natural se-
lection that leads to local adaptation (collectively, “isolation by envi-
ronment”; Sexton, Hangartner, & Hoffmann, 2014; Wang & Bradburd, 
2014). Many conservation efforts rely on delineating distinct popu-
lations for management but often ignore the continuous nature of 
variation on the landscape and its potential relationship with local ad-
aptation or other processes that lead to genotype–environment asso-
ciations (Frankham, 2010; Rodríguez-Quilón et al., 2016). However, it 
is important to understand both geographic and environmental factors 
considering the potential for complex relationships on the landscape.

A landscape genomics approach, utilizing large numbers of ge-
netic loci, offers a powerful means of detecting subtle genetic varia-
tion along the landscape in relation to geographic and environmental 
variables (Sork et al., 2013). When coupled with emerging analytical 
methods to explore nonlinear genotype–environment associations in 
multivariate space, this approach can enhance our ability to explain 
and quantify modern patterns and then project them into the future 
to identify vulnerable or resilient populations along the landscape 
(Fitzpatrick & Keller, 2015; Holliday et al., 2016). Two promising mod-
els are gradient forest (Ellis, Smith, & Pitcher, 2012) and generalized 
dissimilarity modeling (Ferrier, Manion, Elith, & Richards, 2007), which 
were first applied to community ecological data sets and have recently 
been advocated for landscape genomics (Fitzpatrick & Keller, 2015). 
Each can be used to quantify the role of particular environmental and 
spatial variables in structuring genetic variation and describe poten-
tially nonlinear rates of change along these gradients, thus testing for 
isolation by environment in a more realistic and informative way than 
most linear models. Furthermore, they can be considered complemen-
tary to each other because they approach genotype–environment 
associations in very different ways: Gradient forest is regression tree-
based, whereas generalized dissimilarity modeling is distance-based.

The Hawaiian Islands provide an excellent system to apply land-
scape genomics for current conditions as well as for future scenar-
ios, as the archipelago encompasses a wide range of geographic and 
environmental variation with sharp gradients within a relatively small 
area within and between islands (Vitousek, 1995). The geologic his-
tory of the archipelago has a direct impact on the distribution of ge-
netic variation across the islands, and the extant islands range in age 
from 5.1-million-year-old Kauai to the still-growing island of Hawaii. 
Colonization of the land by plants likewise ranges from millions of 
years to newly colonized (Price & Clague, 2002), and the differences 
in the geological age of rock substrates on the island of Hawaii can 
impact plant communities (Kitayama, Mueller-Dombois, & Vitousek, 

1995). The remoteness of the Hawaiian Islands has resulted gen-
erally in a species-poor but unique biota, with a large number of 
endemic species including a few examples of dramatic adaptive radi-
ation (Carr & Kyhos, 1981; Craddock & Kambysellis, 1997). Many of 
the endemic species are of conservation concern, making landscape 
genomic investigations timely and highly applicable for management 
purposes.

One such case is for the ecologically, economically, and cultur-
ally important species, Acacia koa A. Gray (koa). Koa is an endemic 
outcrossing leguminous hardwood tree that has been under threat 
due to land use changes, logging, and the introduced fungal patho-
gen Fusarium oxysporum f. sp. koae (Baker, Scowcroft, & Ewel, 2009). 
A. koa is one of two dominant canopy species, along with Metrosideros 
polymorpha (‘ō’hia), in native Hawaiian forests. It is distributed on all 
the main Hawaiian Islands, except Niihau and Kahoolawe, and has 
the greatest densities on Hawaii, Maui, Oahu, and Kauai (Wagner, 
Herbst, & Sohmer, 1999). It is found in a broad range of environments 
from dry to semi-saturated rain forests, and from sea level to more 
than 2,000 m in elevation. The largest extant populations of koa are 
found on the island of Hawaii between 1,000 and 2,000 m (Baker 
et al., 2009). Koa exhibits phenotypic diversity with two forms that 
are generally recognizable based on morphology. A shorter form with 
narrower phyllodes and longitudinally arranged seeds in pods is re-
ferred to sometimes as A. koaia and is found in drier areas of Hawaii, 
Maui, Lanai, and Molokai (Wagner et al., 1999). A taller form with 
broader phyllodes and transversely arranged seeds in pods is referred 
to generally as A. koa. Based on molecular analysis using the nuclear 
ITS, chloroplast trnK introns, and microsatellite markers, findings from 
Adamski, Dudley, Morden, and Borthakur (2012) support previous 
recommendations that recognize the morphological variations at the 
subspecific level within A. koa. Genetically based morphological and 
growth differences are also apparent among A. koa from the island of 
Hawaii and other islands (Daehler, Yorkston, Sun, & Dudley, 1999; Shi, 
2003; Sun, 1996). Although unusual and difficult to explain, A. koa may 
be paraphyletic with its closest relative, A. heterophylla, which itself is 
monophyletic and is endemic to Réunion Island in the Indian Ocean 
over 16,000 km away from Hawaii (Le Roux et al., 2014). Seed transfer 
guidelines for ecological restoration and agroforestry have been pro-
posed based on ecological zones among and within islands as well as 
preliminary genetic analyses (Dudley et al., 2017), but would benefit 
from insights from landscape genomic approaches that integrate envi-
ronmental and genetic components.

To characterize patterns of genetic variation in A. koa across 
Hawaii and identify and quantify key climate variables associated with 
that genetic variation, we analyzed allele frequencies of single nucle-
otide polymorphisms (SNPs) in relation to spatial and environmental 
variables in two predictive nonlinear modeling frameworks: gradient 
forest and generalized dissimilarity modeling. Our study objectives 
were to (i) examine genomewide, biogeographic patterns of genetic 
differentiation in koa across the Hawaiian Islands, (ii) identify the most 
important geographic and environmental variables structuring genetic 
variation within the island of Hawaii, and (iii) assess whether koa popu-
lations might be vulnerable to potential future environmental changes 
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by applying predicted future climate model data available for the is-
land of Hawaii.

2  | METHODS

2.1 | Sampling

We sampled 311 trees across the geographic, elevational, and cli-
matic range of koa on the islands of Hawaii, Maui, Oahu, and Kauai, 
including six putative A. koaia samples from the island of Hawaii, from 
November 2012 to September 2013 (Table S1).

2.2 | Genotyping by sequencing

Total genomic DNA was extracted from frozen tissue using the 
NucleoSpin kit (Macherey-Nagel, Bethlehem, PA, USA). DNA was 
prepared for sequencing using an efficient restriction-enzyme-based 
approach commonly known as genotyping by sequencing (GBS) 
(Elshire et al., 2011). Briefly, DNA was digested with the ApeKI re-
striction enzyme, common and unique barcoded adapters with over-
hangs complementary to the cut site were ligated to each sample, 48 
samples were pooled in equimolar ratios, and the pooled library was 
PCR-amplified and sent for Illumina sequencing. We largely followed 
the original protocol of Elshire et al. (2011), including using the same 
adapter concentration. However, a different set of longer barcode 
sequences were used (Table S2), all steps were performed manually 
rather than robotically, and we made a few changes to optimize the 
protocol for Acacia, consistent with our experience using similar ap-
proaches with Quercus spp. (P.F. Gugger & V.L. Sork, unpublished). 
For example, adapters were added during the ligation step rather than 
added to the empty plate and dried down prior to digestion; AMPure 
XP bead-based size selection/purification steps were added after the 
ligation step and repeated after the PCR step to ensure a consistent 
distribution of fragment sizes between 200 and 500 bp among all 
preps; and we reduced the number PCR cycles to 16 from 18. Final 
libraries were checked for the proper size distribution on an Agilent 
BioAnalyzer (Santa Clara, CA) with the High Sensitivity DNA assay and 
quantified using a Qubit fluorometer (Waltham, MA). Samples were 
sent to the UCLA Broad Stem Cell Research Center for single-end, 
100-bp sequencing on an Illumina HiSeq2000 v3 (San Diego, CA).

2.3 | Single nucleotide polymorphism calling

SNPs were identified using Stacks 1.35 (Catchen, Amores, Hohenlohe, 
Cresko, & Postlethwait, 2011; Catchen, Hohenlohe, Bassham, 
Amores, & Cresko, 2013). Raw Illumina data in FASTQ format were 
quality-filtered and demultiplexed using process_radtags, which 
removed adapter sequence with up to two mismatches (--adapter_
mm), recovered reads whose barcodes had up to one mismatch to 
the expected barcodes (-r), removed any read with an uncalled 
base (-c), discarded low-quality reads as defined by default settings 
(-q), and trimmed all reads to 87 bases (-t). Parameters for subse-
quent steps were optimized based on three samples, one from each 

of three Hawaiian Islands, that were replicated across four library 
preparations and lanes of Illumina sequencing. We ran Stacks 1.21 
repeatedly on these replicates with a variety of parameter values by 
varying one at a time in each run. Specifically, we evaluated -m 3–5,  
-M 1–3, -n 1–3, --max_locus_stacks 3–5, and --bound_high 
0.05 or 0.1 (Figs S1 and S2). The “optimal” parameter values were 
those that minimized differences among replicates as inferred from 
ordinations of the resulting SNPs. This procedure minimizes the po-
tential SNP and genotype calling error in the spirit of other optimi-
zation procedures (Mastretta-Yanes et al., 2015). The ordinations 
included multidimensional scaling based on Hamming distance (Fig. 
S1) and principal components analysis (Fig. S2), which were per-
formed in PLINK 1.90b2n (Chang et al., 2015). We concluded that the 
“optimal” values for our data were ustacks parameters -m 4 (mini-
mum stack depth to retain locus in an individual) and -M 1 (maximum 
distance between stacks to combine them into a locus) and cstacks 
parameter -n 1 (number of mismatches allowed to combine locus 
among samples when creating catalog). In comparison with -m 4, 
-m 3 also produced similarly small differences among replicates (i.e., 
low error) when in combination with -M 1 -n 1 but yielded nearly 
twice as many total SNPs; thus, we preferred –m 3 to –m 4. Little 
difference was observed among --bound_high and --max_locus_
stacks alternatives; thus, values of 0.05 and 3 were chosen, re-
spectively. Regardless of the parameter values selected, summary 
statistics of diversity, such as heterozygosity (0.22 < H < 0.30) and 
nucleotide diversity (0.0010 < π < 0.0017), did not vary substantially 
(Table S3). Quality filters were applied to the pipeline to retain a high-
confidence subset of SNPs; with rxstacks, we removed SNPs with 
lnL < −30.0 (–-lnl_lim), proportion of “confounded” loci > 0.25 
(--conf_filter), and nonbiological haplotypes (--prune_haplo). 
In each pass of the Stacks pipeline through cstacks, the catalog (a 
reference set of sequences) was built using a geographically repre-
sentative subset of 14 samples, as is recommended. Only one SNP 
per “stack” was retained, and SNPs with >30% missing data across 
all samples (n = 311), lnL < −30 (populations –r 0.7 –-lnl_
lim -30 –-write_single_snp), or minor allele frequency <0.05 
were discarded. Another set of SNPs was generated with the same 
filters considering only samples from the island of Hawaii (n = 207, or 
n = 201 without A. koaia).

2.4 | Ploidy

Koa is tetraploid and does not exhibit variation in ploidy (Atchison, 
1948; Carr, 1978; Hipkins, 2004; Shi, 2003), but it is unclear whether 
it is an autotetraploid or allotetraploid. Some authors have specu-
lated that koa is an allotetraploid with disomic inheritance based 
on inconclusive evidence (Shi, 2003; Shi & Brewbaker, 2005). In 
support of this view, isozyme data (Conkle, 1996) often show more 
than two alleles at a locus within an individual. In contrast, others 
have argued that A. koa is autotetraploid because its closest rela-
tive, A. heterophylla, which is phylogenetically nested within A. koa, 
is a putative autotetraploid formed from another diploid Acacia spe-
cies (Le Roux et al., 2014).
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Stacks is designed for diploid species, but can call SNPs in poly-
ploids if the error model is adjusted to consider the possibility that 
reads supporting each allele in a heterozygote may deviate substan-
tially from 50:50. We did so by setting --bound_high (the maximum 
sequencing error rate) to 0.05 as indicated above. Nonetheless, the 
resulting genotype calls are “coerced” to appear diploid. If koa is 
an allotetraploid (amphidiploid) formed from two species, then this 
coercion may be appropriate because divergent homeologous loci 
are likely to be separated into separate loci in the Stacks pipeline 
under our optimization procedure. If koa is autotetraploid, then we 
expect allele frequencies to be biased toward intermediate values 
because allelic dosages of 0.25 and 0.75 will be coerced to 0.5. We 
expect this coercion to occur equally in both directions (from 0.75 
to 0.5 and from 0.25 to 0.5); thus, the primary effect would be to 
bin all heterozygotes as 0.5. This bias toward intermediate allele fre-
quencies in individuals would not bias the association of these allele 
frequencies with environmental variables on the landscape (see de-
scription of methods below), but the binning may reduce power to 
detect such associations. Therefore, we are confident that our pipe-
line is unlikely to lead to erroneous conclusions from downstream 
analyses.

To explore the possibilities that koa is autotetraploid or that it is 
allotetraploid and our pipeline does not split homeologous loci, we 
generated histograms of the fraction of reads supporting each allele 
for each locus with at least 60 × coverage for each individual with at 
least 1,000 such loci. If either of these issues is present, we expect to 
find peaks at 0.25, 0.5, and 0.75, rather than just 0.5 (Arnold, Kim, & 
Bomblies, 2015).

2.5 | Genetic diversity and structure

Mean expected heterozygosity (H) and nucleotide diversity (π) were 
estimated for each island using Stacks. Genetic structure was esti-
mated with Admixture 1.3.0 (Alexander, Novembre, & Lange, 2009) 
considering K = {1, 2, 3, …, 8} clusters across all samples/islands and 
within only the island of Hawaii (n = 207). The “optimal” number of 
clusters was chosen based on the K with the lowest cross-validation 
error, as recommended by the developers. For the data set containing 
all samples, pairwise FST was estimated among clusters using Admixture 
and compared to estimates among the four Hawaiian Islands as calcu-
lated in PLINK 1.90b3.29. These FST estimates are useful for relative 
comparisons and are unlikely to be biased substantially using diploid 
rather than tetraploid SNP calls, because the effect allele frequency 
binning averages out over the large number of SNPs. In addition, we 
performed principal components analyses using PLINK to provide a 
means for visualizing continuous changes in genetic structure comple-
mentary to the discrete clustering approach of Admixture.

2.6 | Environmental and spatial associations with 
genetic variation

To quantify the contribution of environmental and spatial variables 
in structuring genetic variation, we performed two types of nonlinear 

analyses, gradient forest (GF) and generalized dissimilarity modeling 
(GDM), focusing on samples of A. koa within the island of Hawaii 
(n = 201). These approaches are complementary, as GF is a regression 
tree approach and GDM is a distance-based approach. All analyses 
were performed on an individual basis, rather than arbitrary “popula-
tion” groupings, which are not straightforward with our sampling de-
sign and observed patterns of genetic structure and admixture (see 
Results). In addition to spatial data based on GPS coordinates for each 
tree, we used the following environmental variables as predictors for 
both analyses: log10 of the mean estimated volcanic rock substrate age 
from a U.S. Geological Survey geologic map (Sherrod, Sinton, Watkins, 
& Brunt, 2007), mean annual rainfall (mm) from the 2011 Rainfall 
Atlas of Hawaii (Giambelluca et al., 2013), mean minimum tempera-
ture (°C) from the 2014 Climate of Hawaii project (Giambelluca et al., 
2014), and isothermality (mean diurnal range ÷ mean annual range), 
temperature seasonality (standard deviation × 100), and rainfall sea-
sonality (coefficient of variation) calculated from the above climate 
data sources in ArcGIS 10.0 (ESRI, Redlands, CA, USA) (Fig. S3). These 
specific environmental variables were chosen as a representative set 
that reflects factors expected to influence koa and that generally 
have correlations (|r|) < .8 with each other. Mean minimum tempera-
ture and mean annual rainfall are highly correlated (r > .95) with other 
mean temperature and rainfall variables, respectively, that were not 
included (Table S4).

Gradient forest analysis was implemented in “gradientForest” 
(http://gradientforest.r-forge.r-project.org/) in R 3.1.2 (R Development 
Core Team). GF is a nonparametric, machine-learning regression tree 
approach (Ellis et al., 2012) that allows for exploration of nonlinear 
associations of spatial, environmental, and allelic variables. The ap-
proach partitions the allele frequency data at split values along the 
environmental gradients. Split importance, a measure of the amount of 
variation explained, is high in positions along the gradient where allelic 
change is large. Moving along the gradient, the split importance val-
ues are summed cumulatively to produce a steplike function for allele 
frequency change along the environmental gradient. For this analysis, 
we used the same SNP data in the form of allelic variables as above, 
except that missing data were retained rather than imputed. Spatial 
variables were defined using principal coordinates of neighborhood 
matrices (PCNMs), also known as Moran’s eigenvector maps (MEM), 
based on the geographic coordinates in decimal degrees using the 
pcnm function in “vegan” (Oksanen et al., 2016). PCNMs are a set of 
orthonormal variables calculated through eigenvalue decomposition 
of a spatial weighting matrix, in our case, based on x–y-coordinates 
(Dray, Legendre, & Peres-Neto, 2006). We retained half of the PCNM 
variables with positive eigenvalues (n = 26), as has been suggested in 
similar contexts (Fitzpatrick & Keller, 2015; Manel et al., 2012).

Generalized dissimilarity modeling (Ferrier et al., 2007), which 
is a distance-based, nonlinear extension of matrix regression, was 
implemented in the R package “gdm” 1.2.3 (Manion, Lisk, Ferrier, 
Nieto-Lugilde, & Fitzpatrick, 2016). GDM can account for nonlinear 
relationships between genetic distance and environmental and geo-
graphic distance, as well as variation in the rate of allelic compositional 
change along environmental gradients by fitting splines (Fitzpatrick & 

http://gradientforest.r-forge.r-project.org/
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Keller, 2015). Spline shape describes the allelic compositional change 
along the environmental gradient, while spline height describes the 
importance of the particular environmental variable. Genetic distances 
among individuals were calculated as Euclidean distance based on 
allelic variables. Geographic distance was accounted for in the GDM 
based on Euclidean distance among coordinates (geo=T).

2.7 | Mapping genetic offset under future climate

To investigate how these analyses can be used for management pur-
poses, we identified parts of the A. koa distribution that might be vulner-
able to anticipated climate change by estimating the expected “genetic 
offset” between one future climate scenario and the current landscape 
patterns (as estimated above) following Fitzpatrick and Keller (2015). 
Genetic offset is a measure of the magnitude of genetic change required 
between present and future climate to maintain the currently observed 
relationship between genetic and environmental variation. In these anal-
yses, we excluded volcanic rock substrate age because it was not found 
to be a significant contributor to genetic patterns on the landscape (see 
Results) and because future rock age is directly linearly related to cur-
rent rock age. As an estimate of future climate in Hawaii, we chose to 
use IPCC5 CMIP5 data at 30 arcsec resolution from the CESM1-CAM5-
1-FV2 global circulation model under the Representative Concentration 
Pathway 4.5 greenhouse gas emissions scenario for the year 2070 (av-
erage of 2061–2080) (Fig. S4). These data offer a moderate, representa-
tive scenario for demonstrative purposes, as data optimized specifically 
for Hawaii are not all available for our analyses.

For projecting GF results, we first used the GF predict func-
tion to predict genetic variation across all grid cells on the island of 
Hawaii. We then mapped the resulting predictions across the land-
scape masked by the expected distribution of A. koa/A. koaia (J.P. Price 
et al., 2012) using principal components of the predictions to generate 
a red–green–blue color scale according to the first three axes. Genetic 
offset under the future climate scenario was then estimated by first 
using the GF predict function with the future climate data and then 
estimating Euclidean distance between current predictions and future 
predictions weighted by variable importance for each grid cell on the 
landscape. A similar procedure was followed for GDM results using 
the gdm.transform and GDM predict functions with principal 
components to predict and map current genotype–environment rela-
tionships onto the landscape. The GDM predict function was then 
used with both current and future climate data rasters and time=T to 
estimate genetic offset in a single step.

3  | RESULTS

3.1 | Single nucleotide polymorphisms and ploidy

We identified 11,001 SNPs passing the Stacks filters with minor allele 
frequency >0.05 and representation in at least 70% of all samples. 
Mean depth of coverage per sample for filtered SNPs is 20.1 (range: 
6.2–49.9) (Fig. S5; Table S1), and mean proportion of loci with missing 
data per sample is 0.22 (range: 0.04–0.73) (Table S1). Similarly, we 

found 11,527 SNPs meeting those criteria considering only samples 
within the island of Hawaii.

Histograms of the fraction of reads supporting each allele for 40 
individuals that have at least 1,000 loci with at least 60 × coverage 
demonstrate that heterozygotes are primarily called from situations 
in which support for each allele is approximately 50:50 (0.5) (Fig. S6). 
In many cases, the tails of the histogram extend to 0.25 and 0.75, but 
only in a few cases are subtle peaks suggested. As a result, we believe 
that koa may be allotetraploid (amphidiploid) and our pipeline is sep-
arating homeologs, meaning that there is likely very little bias in the 
genotype calls or downstream analyses.

3.2 | Genetic diversity and structure

Genetic diversity is moderate: 0.29 < H < 0.33 and 0.0016 < π < 0.0018 
(Table 1). FST values among islands and among admixture clusters 
are moderate to high for a tree species: 0.05 < FST < 0.19 (Table 2). 
These relatively high FST values might represent further support for 
our argument that koa is allotetraploid. If koa were autotetraploid and 
analyzed as a diploid, then there would be an excess of heterozygotes 
due to binning all heterozygotes, which would depress FIS and FIT to 
negative values and consequently reduce or “cancel out” all but the 
largest FST values. The “optimal” number of clusters as inferred from 
Admixture is 7 when considering all samples and 5 when considering 
only the island of Hawaii (Figure 1). The latter is essentially the same as 

TABLE  1 Mean expected heterozygosity (H), nucleotide diversity 
(π), and their standard errors (SE) estimated for each island

Island H SE π SE

Hawaii 0.33 0.0014 0.0018 0

Kauai 0.30 0.0013 0.0016 0

Maui 0.29 0.0015 0.0017 0

Oahu 0.29 0.0015 0.0017 0

TABLE  2 Pairwise FST among islands and among genetic clusters 
inferred from Admixture

Island Hawaii Oahu Kauai Maui

Hawaii –

Oahu 0.12 –

Kauai 0.14 0.14 –

Maui 0.08 0.05 0.13 –

Cluster K1 K2 K3 K4 K5 K6 K7

K1 –

K2 0.12 –

K3 0.10 0.08 –

K4 0.09 0.15 0.13 –

K5 0.16 0.16 0.15 0.19 –

K6 0.10 0.13 0.10 0.11 0.18 –

K7 0.08 0.14 0.11 0.05 0.16 0.11 –
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a subset of those inferred across all samples, and thus, only the overall 
result is shown. Kauai and Oahu are dominated by one cluster each; 
Maui is a mix of two clusters, one of which is the same as in Oahu; 
and Hawaii contains five of its own clusters with some geographic 
structure (e.g., windward versus leeward) and individuals in various 
levels of admixture. A. koaia (from Hawaii) may be the product of ad-
mixture from individuals from Maui and Kauai. Cluster membership is 
generally not significantly correlated with the amount of missing data 
nor coverage after accounting for multiple testing (−0.15 < r < 0.11, 
p > 0.05), except for cluster K4 which is weakly but significantly asso-
ciated with missing data percentage (r = 0.23, p = 0.0004). PCA reveals 
some notable differences among islands and shows similar patterns to 
those from Admixture (Figure 2). The first principal components axis 

separates Hawaii from other islands, shows some structure within 
Hawaii, and shows that some samples in Maui are distinct from those 
on Oahu. The second axis separates the samples in Kauai and suggests 
that A. koaia is distinct but genetically similar to Kauaian samples of 
A. koa. In both the ordination and the admixture plots, a few “stray” 
individuals appear to cluster with the “wrong” island, suggesting they 
may have been moved or arrived there recently.

3.3 | Environmental and spatial associations with 
genetic variation

GF analysis indicates that mean annual rainfall is the single most 
important predictor among all environmental and spatial variables 

F IGURE  1  (a) Map depicting individual assignments to seven genetic clusters inferred from Admixture against a rainfall gradient as the 
background map color. (b) Individuals (vertical bars) colored by proportion assignment to each genetic cluster
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considered; isothermality, minimum temperature, temperature sea-
sonality, and rainfall seasonality have moderate importance; and log 
of the rock substrate age has little importance (Figure 3a). Summing 
importances of all PCNMs, the results suggest that spatial variables 
explain 84% of variation and environmental variables explain 16%, al-
though these estimates may vary when considering different numbers 
of spatial and environmental variables. Allelic composition changes 
sharply between 3,000 and 4,000 mm/yr rainfall, whereas changes 
along other environmental variables occur gradually or with modest 
step-changes, if at all (Figure 3b).

Geographic and environmental distances for the variables consid-
ered with GDM explain 32.9% of allelic variation (deviance). Annual 
rainfall is by far the most important predictor, whereas there is almost 
no contribution of minimum temperature or rock substrate age, and 
all other variables contribute modestly (Figure 4). Rainfall varies more 
linearly in the GDM results compared to the GF results, and unlike the 
GF results, environmental variables explain more variation (80%) than 
the spatial variable (20%).

Mapped projections of GDM and GF results onto the landscape 
are generally concordant and show that eastern part of the island 
of Hawaii, which is the windward side where rainfall is high, is ge-
netically different from the rest of island (Figure 5). This eastern 
area also exhibits the highest genetic offset under our future cli-
mate change scenario, owing to predicted decreases in rainfall in 
this region.

4  | DISCUSSION

4.1 | Biogeography

Genetic structure among islands is relatively strong and complicated, 
suggestive of isolation with periodic dispersal. Evidence of isolation is 
seen in the PCA and Admixture results that show distinct clusters that 

are unique to each island (Figures 1 and 2). Most individuals on the 
small islands are genetically pure, whereas the big island of Hawaii is 
composed of several highly admixed clusters (Figure 1) or relatively 
continuous variation (Figure 2) specific to that island. Nonetheless, 
dispersal appears to be an important force structuring variation among 
islands. For example, the Oahu genetic cluster is found prominently on 
Maui near its northeastern coast, where a few individuals are admixed 
(possible F1s), as well as in a few pure individuals on Kauai and Hawaii 
(Figure 1). These dispersal events are likely recent, given the general 
lack of admixture or apparent backcrosses. For example, they are 
not consistent with a long history of pollen dispersal with prevailing 
winds from northeast to southwest (e.g., Gugger & Cavender-Bares, 
2013). Given the cultural and economic importance of the species, 
along with active restoration programs, it is likely that the observed 
recent dispersal events relate to human activities, although we can-
not rule out other mechanisms. Hints of deeper biogeographic his-
tory are suggested in the PCA (Figure 2) and pairwise FST estimates 
(Table 2), which show that populations on Oahu and Maui are most 
similar. Hierarchical clustering analyses of genetic variation presented 
in Dudley et al. (2017) suggest that these populations are in turn most 
similar to A. koa on Kauai and least similar to those on Hawaii, also 
consistent with our findings by island and cluster (Table 2). Without 
rooting these relationships, it is hard to test whether the dispersal 
and colonization history follows a stepping-stone pattern from oldest 
(Kauai) to youngest (Hawaii) island.

Interestingly, A. koaia on Hawaii falls within the range of genetic 
variation for A. koa but forms a distinct group that is most similar to 
A. koa populations on Kauai without signs of admixture with popu-
lations from the island of Hawaii (Figure 2). Therefore, A. koaia may 
be a drought-adapted ecotype formed following dispersal to Hawaii 
from Kauai, possibly through stabilized admixture (“hybrid swarm”) 
of Kauaian populations with a smaller fraction of Mauian populations 
(Figure 1). This scenario also suggests that Kauaian populations may 
not readily interbreed with populations of A. koa from the island of 
Hawaii, facilitating ecotypic divergence on Hawaii. If A. koaia contin-
ues to be considered a different species or subspecies on the basis 
of morphology, ecology, and genetics, our genetic data suggest that 
populations on Kauai might also represent a cryptic species. Indeed, it 
might be argued that populations on each island can be considered a 
different subspecies according to the observed genetic clustering with 
limited admixture as well as previously reported isozyme and geneti-
cally based morphological differences among the island of Hawaii and 
the other islands (Conkle, 1996; Daehler et al., 1999; Shi, 2003; Sun, 
1996). However, further morphological and ecological investigations 
are warranted.

4.2 | Rainfall structures diversity

Within the island of Hawaii, variation is partially structured by geo-
graphic factors but may be mostly driven by rainfall gradients. Both 
GF and GDM analyses indicate that rainfall is by far the most im-
portant variable associated with genetic variation (Figures 3 and 4). 
The sharp changes in genetic composition from the wet, windward 

F IGURE  2 Principal components analysis of 11,001 SNPs across 
305 samples of Acacia koa and 6 A. koaia

–0.05 0 0.05

–0
.0

5
0

0.
05

0.
10

0.
15

PC1

P
C

2
Hawaii
A. koaia
Kauai
Maui
Oahu



238  |     GUGGER et al.

(eastern) side of the island to the dry, leeward (western) side are strik-
ing in both landscape projections. The primary disagreements among 
the methods are the relative role of spatial and environmental vari-
ables and whether the relationship with rainfall is approximately linear 
(GDM) versus a steep step function (GF), both of which can be at-
tributed to differences in statistical approach and sensitivity, as well 
as the number of spatial versus environmental variables considered in 
each model.

Genomewide associations with environmental variables can re-
sult from geographic, demographic, or selective forces (Wang & 
Bradburd, 2014). We do not believe geographic forces alone, such 
as physical barriers on the island of Hawaii, explain this result. The 
topographic features of the island of Hawaii where genetic change is 
steepest are not likely to block dispersal, and in fact, pollen is likely 
to readily disperse from the windward to leeward side of the island, 
promoting homogenization along this axis for which we observe the 
sharpest differences. Furthermore, individuals at the southern, wet 
end of Mauna Loa Road (Table S1) are not physically blocked from 
individuals located further upslope along the drier stretch of road, 
but the southern samples are genetically more similar to windward 
populations (Figure 1). Instead, other demographic and selective 
forces may be at play. For example, steep environmental differences 

over small spatial scales can lead to differences in flowering phe-
nology among nearby individuals, biasing mating patterns toward 
those with similar environmentally controlled phenology leading 
to, or magnifying, genotype–environment associations (Soularue & 
Kremer, 2014). Moreover, environmental gradients might influence 
the behavior or distributions of key insect dispersers of koa pollen 
and/or animal dispersers of its seeds. Another explanation for the 
observed associations is local or clinal adaptation to rainfall regimes 
(e.g., water stress). Strong genotype–environment correlations after 
accounting for spatial variables, as we observe, have been attributed 
to local adaptation (e.g., Manel et al., 2010). Furthermore, it is clear 
that water stress plays an important role in ecotypic differentiation 
between A. koa and A. koaia on Hawaii (Baker et al., 2009) and A. koa 
populations exhibit genetically based differences in water use effi-
ciency along elevation gradients on the island (Ares, Fownes, & Sun, 
2000), suggesting the importance of adaptation to water stress more 
generally for this genus in this setting. In addition, a number of koa 
provenance tests more broadly demonstrate local adaptation of koa 
population to home environments among islands and offer prelimi-
nary evidence of differences among populations within islands based 
on general growth and morphological quantitative traits (Conrad, 
Fulii, & Ikawa, 1995; Daehler et al., 1999; Shi, 2003; Sun, 1996). 

F IGURE  3  (a) R2-weighted importance of environmental and spatial variables for explaining genetic gradients from gradient forest analysis. 
(b) Cumulative importance of allelic change along six environmental gradients
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Explanations based on demographic and selective mechanisms are 
not mutually exclusive, as natural selection and assortative mating by 
phenology can serve to reinforce each other (Andrew, Ostevik, Ebert, 
& Rieseberg, 2012; Via, Bouck, & Skillman, 2000), and patterns of 
neutral and adaptive genetic variation can be correlated for a number 
of reasons (e.g., Gugger, Cokus, & Sork, 2016; Sork et al., 2016; Wang 
& Bradburd, 2014). Thus, our findings are consistent with isolation-
by-environment or isolation-by-adaptation models (Nosil, Funk, & 
Ortiz-Barrientos, 2009; Orsini, Vanoverbeke, Swillen, Mergeay, & De 
Meester, 2013; Wang & Bradburd, 2014).

4.3 | Risk of genetic offset

Because rainfall appears to be so important in shaping variation, it is 
unsurprising that predictions of genetic offset, based on a future cli-
mate scenario, suggest that the most vulnerable populations are along 
the edge of the windward–leeward transition zone (Figure 5) where 
rainfall is expected to decline in the future according to the model we 
selected (Figs. S3 and S4). Regardless of whether the associations are 

driven by demographic or selective forces, we expect that changing 
environment will lead to the greatest genetic changes from today’s ge-
netic variation to expected future variation. To the extent that these 
relationships are adaptive, we can assign vulnerabilities to projected 
change where population may be most maladapted to future envi-
ronments. Further work integrating population genomic and quanti-
tative genetic approaches is needed to break down the contribution 
of demographic and adaptive forces, and monitoring of koa popula-
tions might provide empirical data to validate the model projections 
of vulnerability.

4.4 | Management implications

We observed strong genetic structure among islands, clusters, and 
ecotypes, and understanding these population differences can in-
form land management decisions. For example, preliminary seed 
transfer guidelines follow ecological zones within islands (Dudley 
et al., 2017), but these zones might be refined considering the pat-
terns observed here. More sampling on each island, particularly 

F IGURE  4  (a) Variable importance and (b) I-splines showing changes genetic distance along environmental gradients as modeled by 
generalized dissimilarity modeling. Splines reaching higher values have higher importance. I-spline plot for rock substrate age is not shown 
because all coefficients equal zero
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the smaller islands, would help to better define the composition of 
different clusters on islands with mixed composition. The strong 
genetic structure also offers an opportunity to further explore 
local adaptation among groups and exploit these, and crosses, for 
agroforestry.

We have found that rainfall is a major force shaping variation 
within the island of Hawaii. Whether this pattern is driven by demo-
graphic forces related to rainfall (e.g., via phenology) or due to nat-
ural selection and local adaptation, we expect that climate change 
will exert pressure on populations in areas where rainfall regimes will 
change most. These vulnerable areas might be candidates to consider 
moving genotypes (Aitken & Whitlock, 2013) from other regions that 
are “preadapted” to the expected future conditions (e.g., moving gen-
otypes from dry regions to vulnerable areas where rainfall will decline 
following associations observed in GDM and GF). More generally, the 
strong genetic differences within the island of Hawaii along gradients 
can guide plantings even when considering only present patterns. For 
example, previously proposed ecologically based seed zones (Dudley 
et al., 2017) might be refined to account for the axes of variation ob-
served here.

We show the utility of predictive, nonlinear association model-
ing for identifying vulnerable and resilient populations. However, our 

findings should be modified as better downscaled climate data are 
developed to account for unique aspects of Hawaii that may not be 
well accounted for in global circulation models. To the extent that the 
models used here are accurate, we identify specific regions for con-
cern. Overall, this approach can be readily applied to guide planting 
strategies for any species of conservation or economic interest utiliz-
ing genomic (e.g., RAD-Seq/GBS) data.
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F IGURE  5 Current landscape patterns 
of allelic composition as predicted from 
transformed environmental variables after 
adjusting for spatial variation from (a) 
gradient forest and (c) general dissimilarity 
models. Within each of these panels, similar 
colors represent similar expected genetic 
compositions (colors are not comparable 
between these panels). Under future 
climate, “genetic offset” depicting areas 
that will be most discordant genetically 
are shown for (b) gradient forest and (d) 
general dissimilarity models. Higher offset 
(more red) areas can be interpreted as 
regions of higher vulnerability to predicted 
future change. Landscape is masked by 
the current predicted distribution of 
A. koa/A. koaia (Price et al., 2012)
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